

Evaluating Lost Capacity Due to Technology Related Behavior

Meeting on January 8, 2020

Kate Hyun and Stephen Mattingly

Project Overview

- Use historic data to assume the delay at the intersection
- With new technology, driver distraction and delay at traffic signals may have increased
- Aims to evaluating lost capacity : if the current assumptions used for operations need to be adjusted to more accurately reflect actual delay associated with new technology or other in-vehicle distractions.

Project Progress

- Developed data collection and analysis framework
- Completed data collection for three sites
- Completed quantitative assessments on start-up delay and the associated distraction behaviors for two sites.

Data collection set-up

Video and field observation

	Site 1	Site 2	Site 3		
Location	Matlock	Pioneer	South Belt Line Rd		
Date and time	June 04-06, July 21-23 4:00pm to 6:00pm	July 02-05 4:00pm to 6:00pm	November 01,08,15,22 4:30 pm to 6:00pm		
Total Cycle	131	98	130		
Total Vehicle	2,985	1,876			
UNIVERSITY OF TEXAS 🛠 ARLINGTON					

Data Collection

- Two cameras capture vehicle queue and signal cycle

At the field.

Data Analysis Tool

- Collected 20 hours of data
- Video captures vehicles every 34.48 millisecond
- Processed over 2 million image frames and manually matched the vehicles recorded on the distraction log
- Developed a programming code to automate headway calculation

UNIVERSITY OF TEX

Data Analysis

- 1. Frequency and Types of Distraction Characteristics
- 2. Start-up Delay and Total Start-up Lost Time
- 3. Statistical Tests
 - Does distraction affect start-up headway?
 - Does start-up delay affect total lost time?
 - Are there differences between tech- and non-tech induced distractions?

Number of Vehicles and Distraction Observed

Overall

	# of cycles	# of vehicles	# distraction during red	# distraction during green
Matlock	131	2985	555 (19% of total)	200 (7% of total & 35% of Red distraction)
Pioneer	98	1876	419 (22% of total)	103 (5% of total & 25% of Red distraction)

By lane

	Lane 1		Lane 2		Lane 3	
	# of vehicles	# of distractions Red (Green)	# of vehicles	# of distractions Red (Green)	# of vehicles	# of distractions Red(Green)
Matlock	1085	250 (87)	1012	200 (73)	888	115 (40)
Pioneer	660	161 (45)	673	153 (38)	543	105 (20)

Distraction Behavior in Each Lane (Matlock)

- Technology
- Eating or drinking
- Talking
- Moving Objects
- Grooming
 - Outisde Person or Object

Distraction Behavior in Each Lane (Pioneer)

Start-up Lost Time

UNIVERSITY OF TEXAS 🖈 ARLINGTON

Vehicle Headway (Matlock)

Ν

Vehicle Headway (Pioneer)

Ν

Total Lost Time

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Statistical Tests – Start-up lost time comparisons by vehicle position

Vehicle position 1 comparison

Vehicle position 2 comparison

The statistical test examines whether ...

H₀: Drivers distraction has **no** impact on headway departing signal

 $Mean Headway_{distraction} = Mean Headway_{No distraction}$

Or,

H₁: Drivers distraction **increases** headway departing signal

 $Mean Headway_{distraction} > Mean Headway_{No distraction}$

UNIVERSITY OF TEXAS 🔆 ARLINGTON

🚓 🚓

		Pioneer		Matlock	
		Distraction	No distraction	Distraction	No distraction
position 1	Mean	1417 (N= 10)	1066(N= 230)	1584(N= 17)	807 (N= 305)
	P-value	0.0	9	0.0003	
	Result	Distraction incre	ases headway	Distraction increases headway	
Position 2	Mean	1883(N= 23)	1218(N= 216)	1477 (N= 22)	950(N= 328)
	P-value	0.0009		0.005	
	Result	Distraction incre	ases headway	Distraction increases headway	
Position 3	Mean	1311(N= 24)	533(N= 198)	930(N= 21)	350(N= 310)
	P-value	0.000		0.007	
	Result	Distraction increases headway		Distraction increases headway	
Position 4	Mean	952(N= 15)	258(N= 162)	765(N= 40)	153(N= 282)
	P-value	0.000		0.001	
	Result	Distraction increases headway		Distraction increases headway	

Headway comparisons between technology induced distraction vs non-technology induced distraction

VS

Tech Distraction Non-Tech Distraction

Front: Vehicle position 1&2, Middle 3&4, Back 5+

18

Statistical Tests – Start-up lost time comparisons for aggregated vehicles

Distraction Impact area	Compared to		
Distracted 🦾 Non-distracted	Impacted vehicles (area) from distraction		

Hypothesis

 H_1 : Start up lost time is higher when a lead vehicle is distracted than no vehicles are distracted in the impact area

Statistical Tests – Start-up lost time comparisons for aggregated vehicles

		Pioneer		Matlock	
		Distraction	No distraction	Distraction	No distraction
Vehicle 1-4	Mean	3666(N= 14)	3083 (N= 118)	3056 (N= 17)	2189 (N= 218)
	P-value	0.0407		0.0090	
	Result	Distraction causes higher loss		Distraction causes higher loss	
Vehicle 2-4	Mean	3394 (N= 21)	2062 (N= 117)	2145 (N= 22)	1313 (N= 218)
	P-value	0.0010		0.0023	
	Result	Distraction causes higher loss		Distraction causes higher loss	
Vehicle 3-4	Mean	1752(N= 24)	845(N= 117)	1185 (N= 21)	486 (N= 218)
	P-value	0.0000		0.0097	
	Result	Distraction causes higher loss		Distraction causes higher loss	

Start-up lost time comparisons by vehicle & delay positions

 The analysis investigates the relationships between vehicle position and distraction location

ARLINGTON

Headway comparisons by vehicle & delay positions (Pioneer)

Mean Headway

	Position 1	Position 2	Position 3	Position 4	Position 5 to 9
Delay at 1	3357	3401	2962	2208	2271
Delay at 2	3005	3823	2985	2342	2294
Delay at 3	3005	3158	3251	2382	2118
Delay at 4	3005	3158	2472	2892	2488
Delay at 5	3005	3158	2472	2198	2757

Non-Distraction 3005 3158 2472 2198

Vehicle distracted

Remaining Tasks

- Complete 3rd intersection data analysis
- Focus on how truck presence and vehicle distraction affect start-up delay

No truck in queue and 1st vehicle distraction 1 truck in queue and 1st vehicle distraction 2 trucks in queue and 1st vehicle distraction

Some Headway Patterns

No truck

2 trucks

Vehicle Position

Vehicle Position

Vehicle Position

UNIVERSITY OF TEXAS 📌 ARLINGTON

Recommendation

- Understand the impact of uncertainty/high variance of start-up lost time
- Investigate safety and environmental impacts
- Additional analysis Impact on platoon dispersion and progression
 - Will green band decrease when considering progression through multiple intersections?
 - Differences for fixed vs. actuated

Thank you

UNIVERSITY OF TEXAS 🗡 ARLINGTON